b'[4.] Y.-H. Lee, J.-H. Park, I.-H. Kim, D.-J. Park, Y.-I. Jung, B.-K. Choi, H.-G. Kim, Enhanced wear resistance of CrAl-coated cladding for accident-tolerant fuel, Journal of Nuclear Materials, 523 (2019) 223-230.[5.] J.-C. Brachet, I. Idarraga-Trujillo, M. Le Flem, M. Le Saux, V. Van-denberghe, S. Urvoy, E. Rouesne, T. Guilbert, C. Toffolon-Masclet, M. Tupin, C. Phalippou, F. Lomello, F. Schuster, A. Billard, G. Velisa, C. Du-cros, F. Sanchette, Early studies on Cr-Coated Zircaloy-4 as enhanced accident tolerant nuclear fuelFigure 3. Appearance of the uncoated Zr alloy and Cr-coated claddings after 20 claddings for light water reactors,and 100 hours fretting tests in pressurized water at 204 C.Journal of Nuclear Materials, 517 (2019) 268-285.[6.] T. Dabney, G. Johnson, H. Yeom, B. Maier, J. Walters, K. Sridharan, Ex-perimental evaluation of cold spray FeCrAl alloys coated zirconium-alloy for potential accident tolerant fuel cladding, Nuclear Materials and Energy, 21 (2019) 100715.[7.] S. Lazarevic, R. Y. Lu, C. Favede, G. Plint, P. J. Blau, J. Qu, Investigating grid-to-rod fretting wear of nuclear fuel claddings using a unique au-toclave fretting rig, Wear, 412413 (2018) 30-37.[8.] H. Jiang, J. Qu, R. Y. Lu, J.-A. JohnFigure 4. Comparison of cladding and grid wear performance in short (AFIR-S, 20 hours) and long fretting tests (AFIR-L, 100 hours).Wang, Grid-to-rod flow-induced impact study for PWR fuel in reac-tor, Progress in Nuclear Energy, 91 (2016) 355-361.2020|AFC ACCOMPLISHMENTS 69'